5 research outputs found

    Nonlinear Channel Estimation for OFDM System by Complex LS-SVM under High Mobility Conditions

    Full text link
    A nonlinear channel estimator using complex Least Square Support Vector Machines (LS-SVM) is proposed for pilot-aided OFDM system and applied to Long Term Evolution (LTE) downlink under high mobility conditions. The estimation algorithm makes use of the reference signals to estimate the total frequency response of the highly selective multipath channel in the presence of non-Gaussian impulse noise interfering with pilot signals. Thus, the algorithm maps trained data into a high dimensional feature space and uses the structural risk minimization (SRM) principle to carry out the regression estimation for the frequency response function of the highly selective channel. The simulations show the effectiveness of the proposed method which has good performance and high precision to track the variations of the fading channels compared to the conventional LS method and it is robust at high speed mobility.Comment: 11 page

    Contribution Ă  l'estimation d'un canal radio mobile MIMO-OFDM utilisant les SVR

    No full text
    The performance of wireless communication systems is largely governed by the wireless channel environment. Usually, transmission that are carried out on mobile radio channel are selective in time and frequency. To overcome the channel selectivity and allow high transmission data rate, new approaches for synchronization, equalization and channelestimation are needed.The use of Support Vector Machines (SVMs) has shown several advantages in re-gression, prediction and estimation over some of the classical approaches due to its improved generalization capabilities. Moreover, the introduction of complex algebra in the SVM formulation can provide us with a more natural and flexible framework whendealing with complex symbols and constellations.The current thesis work focuses on the study and development of efficient channel estimation algorithms based on complex Support Vector Machines Regression (SVR) that are specifically adapted to pilot-aided OFDM (Orthogonal Frequency Division Mul-tiplexing) structure and applied to Long Term Evolution (LTE) downlink system. The mathematical model of the LTE mobile radio channel is described and simulated for various scenarios based on 3GPP specifications. According to this model, a nonlinear complex SVR is proposed for SISO-OFDM system. The principle of the proposed kernel-based learning algorithm is to exploit the information provided by the reference signals to estimate the channel frequency response. The proposed approach is based on two separate phases: learning phase and estimation phase. In learning phase, we estimate first the subchannels pilot symbols and in estimation phase, frequency responses of data subchannels are determined by means of SVM interpolation mechanism. In addition, a nonlinear complex Multiple Support Vector Machines Regression (M-SVR) algorithm adapted to MIMO (Multiple Input Multiple Output) architecture is proposed to esti-mate the multipath fading channel in MIMO-OFDM system with both STBC (Space Time Bloc Coding) and V-BLAST (Vertical Bell Laboratories layered Space Time) schemes.The feasibility of our approaches is confirmed by computer simulation results achieved for LTE downlink model. This experiments allow to analyze the performance of the SVR technique and the suitability of the Δ-Huber cost function in the mobile radio multipath fading channel presenting non-Gaussian impulsive noise interfering with OFDM refer-ence symbols under high mobility conditions.La performance des systĂšmes de communication sans fils dĂ©pend largement des car-actĂ©ristiques du canal radio mobile. GĂ©nĂ©ralement, la plupart des transmissions sontrĂ©alisĂ©s sur des canaux sans fils sĂ©lectifs en temps et en frĂ©quence. Afin de surmonter lasĂ©lectivitĂ© du canal et permettre un dĂ©bit de transmission de donnĂ©es Ă©levĂ©, de nouvellesapproches pour la synchronisation, l’égalisation et l’estimation de canaux sont nĂ©ces-saires. L’utilisation des machines Ă  vecteur support (SVM) a montrĂ© plusieurs avantagesdans les domaines de rĂ©gression, estimation et prĂ©diction par rapport Ă  certaines ap-proches classiques grĂące Ă  ses capacitĂ©s de gĂ©nĂ©ralisation. En outre, l’introduction del’algĂšbre complexe dans la formulation des SVMs a fourni un cadre plus souple et naturellorsqu’on traite des constellations et symboles complexes.Les travaux de recherche introduits dans cette thĂšse portent sur l’étude et le dĂ©veloppe-ment des algorithmes d’estimation de canal efficaces et robustes basĂ©s sur les machinesĂ  vecteur support pour la rĂ©gression (SVR) particuliĂšrement adaptĂ©s Ă  la structureOFDM (Orthogonal Frequency Division Multiplexing) avec des symboles pilotes. Cesalgorithmes seront ensuite appliquĂ©s Ă  un systĂšme LTE (Long Term Evolution). LemodĂšle mathĂ©matique du canal radio mobile LTE est dĂ©crit et simulĂ© pour diffĂ©rentsscĂ©narios basĂ©s sur les spĂ©cifications 3GPP. Selon ce modĂšle, l’estimateur SVR nonlinĂ©aire complexe est proposĂ© pour le systĂšme SISO-OFDM. Le principe de cet al-gorithme d’apprentissage basĂ© sur les fonctions noyaux est d’exploiter les informa-tions fournies par les symboles pilotes pour estimer la rĂ©ponse frĂ©quentielle du canal.L’approche proposĂ©e repose sur deux phases distinctes: la phase d’apprentissage et laphase d’estimation. Dans la phase d’apprentissage, nous estimons d’abord les sous-canaux des symboles pilotes, puis dans la phase d’estimation, les rĂ©ponses frĂ©quentiellesdes sous-canaux de donnĂ©es seront dĂ©terminĂ©es par le mĂ©canisme d’interpolation SVM.En outre, un algorithme non linĂ©aire complexe basĂ© sur les machines Ă  vecteur supportpour la rĂ©gression multiple (M-SVR ) adaptĂ© Ă  l’architecture MIMO (Multiple InputMultiple Output) est proposĂ© pour estimer le canal dans les systĂšmes MIMO-OFDMexploitant les techniques STBC (Space Time Bloc Coding) et V-BLAST (Vertical BellLaboratories layered Space Time). La faisabilitĂ© de nos approches est assistĂ©e pardes rĂ©sultats de simulation obtenus pour le modĂšle LTE. Ces expĂ©riences permettentd’analyser les performances de la technique SVR et la pertinence de la fonction coĂ»tΔ-Huber dans un canal radio mobile Ă  trajets multiples prĂ©sentant un bruit impulsionnelnon-Gaussian interfĂ©rant avec les symboles pilots sous des conditions de haute mobilitĂ©
    corecore